
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

A Bayesian Computation Graph for High-Performance
Gradient Evaluation on the JVM

AVI BRYANT

1 INTRODUCTION
Rainier is a Scala library for building fixed-structure, continuous-parameter generative models, to be
sampled and optimized using gradient-based methods. Its core contribution is a static computation
graph targeted at Bayesian model inference in a Java Virtual Machine production environment.
In particular, Rainier is designed to be deployed to large data processing clusters running

Spark, Hadoop, or similar JVM-based systems, which are very commonly found in industry. These
environments often discourage the use of native (as opposed to JVM) libraries, and do not have
access to GPUs. As a result, Rainier must rely on a heavily optimizing compiler, directly targeting
the JVM, to achieve high performance.
We will focus on two stages of the compiler: first, a partial evaluation stage that attempts to

pre-compute as much as possible of the function represented by the graph, given fixed model inputs
and observations (but still allowing parameter values to vary); second, the generation of low-level
JVM bytecode designed to be easily compiled to efficient machine code by the JVM’s just-in-time
compiler.
We will also briefly discuss two novel features of the computation graph that are particularly

helpful in the Bayesian context: log-density annotations on parameter nodes, and the use of interval
arithmetic for tracking the support of each node of the graph.

2 RELATEDWORK
Theano [5] and TensorFlow [1] both provide similar computation graphs based on individual
mathematical operations. Both of them use a combination of Python and native libraries, and
achieve their best performance on GPUs, making them challenging to deploy in a JVM context.
They also target stochastic, mini-batch algorithms, which limits the opportunities for partial
evaluation; by contrast, Rainier targets full-batch gradient algorithms like HMC and L-BFGS,
enabling specialization of the computation to the entire dataset.

Stan [4] targets a very similar problem space: fixed-structure continuous-parameter models to be
used with gradient-based methods. It similarly compiles to an intermediate form (C++ source code)
that can be further compiled to produce high-performance machine code. However, it compiles the
model without having access to any of the observation data, which limits its ability to perform
partial evaluation optimizations. The requirement to have the C++ compiler available when building
models also significantly increases the complexity of deploying it in a production setting, rather
than for research use.

The marginalization described in section 3.3 is similar to that described in Autoconj [2], and in
particular shares a similar canonical form.

3 PARTIAL EVALUATION
3.1 Motivation
Gradient-based samplers, such as HMC, must repeatedly evaluate a joint log-density function,
loдp(θ ;x), along with its gradient with respect to θ . Each of these thousands or even millions of

Author’s address: Avi Bryant, avi@avibryant.com.



50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

2 Avi Bryant

evaluations will have different parameter values θ , but for any given sampling run, the structure of
the function, and the observation values x , will not change.
Each model’s loдp function is unique. However, it is not typical to write a loдp function from

scratch using onlymathematical primitives. Instead, this functionwill be assembled as a composition
of many smaller, reusable functions, provided either by the standard library or by the user. One
such function might be, for example, a normal_loд_pd f (µ,σ ,y). These functions will be written
treating all of their parameters as free, eg,

normal_loд_pd f (µ,σ ,y) = loд
(

1
σ
√
2π

)
−
1
2

(y − µ

σ

)2
(1)

However, when used in a particular model, any (though usually not all) of those parameters will
in fact be known constants. For example, when sampling from a Normal(0, 1) random variable, and
approximating π , the equation could be simplified as follows:

normal_loд_pd f (0, 1,y) =
−y2

2
− 0.9189 (2)

If, on the other hand, µ and σ are random variables but y is known, it might be advantageous to
distribute out the (y − µ)2 term, obtaining:

normal_loд_pd f (µ,σ , 3) = loд
(

1
σ
√
2π

)
−
9 − 6µ + µ2

2σ 2 (3)

Simplifications can also become available because of function composition. For example, the
general purpose poisson log PDF is:

poisson_loд_pd f (λ,y) = yloдλ − λ − loд(y!) (4)

However, in the common case of a log link function, we will have λ = ex for some x. We’d like
to be able to take advantage of that and simplify to yx − λ − loд(y!); and indeed, Stan provides a
special poisson_log function for exactly this case.

3.2 Goal
Rainier’s goal is to construct a similar simplification of the entire loдp function, during model
construction and compilation. In almost every model this will yield a significant reduction in the
number of mathematical operations needed to compute the gradient, and removes the need for
manual optimizations like poisson_log, as well as reducing the need for manual pre-processing of
the observations outside of the model. In some common cases, this can also provide an asymptotic
speed-up, simplifying a log-likelihood computation over N observations from O(N ) to O(1).

3.3 Asymptotic Speedup
In particular, this asymptotic speed-up is available if the log-likelihood function L(θ ;x) can be
decomposed into f (θ ) ·д(x), where f is a vector function on the parameter vector θ and д is a vector
function on a single row of observations x . The sum of the log-likelihoods

∑N
i=1 L(θ ;xi ) can then be

decomposed into f (θ ) · k , where k =
∑N

i=1 д(xi ) and can be pre-computed, thus marginalizing the
observations. This decomposition often falls naturally out of Rainier’s partial evaluation system
(for example, as in equation 3), and will be recognized and exploited when it does.



99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

A Bayesian Computation Graph for High-Performance Gradient Evaluation on the JVM 3

3.4 Approach
Rainier’s approach to partial evaluation is unusual in that it is incremental, eagerly performing the
partial evaluation as each new node is introduced to the graph. For example, consider the following
Scala code:

val lambda = x.exp
val z = lambda.log * 10/(5*2)

In this simple case, while constructing the object to be assigned to z, Rainier will first strip away
the exp node in response to the loд operation, and then ignore the multiplication by 1, and return
exactly the same node referenced by x . This keeps the graph always in a compact form, rather than
allowing it to expand to a point where it would then take an infeasible amount of resouces to run
an optimization pass.

Along with some special cases like in the example above, the key to this incremental approach is
Rainier’s choice of representation for arithmetic operation nodes.

A standard computation graph would provide binary nodes for arithmetic operators like x +y or
x ∗ y, where x and y are references to child nodes. Rainier relies instead on a pair of richer node
types. The first of these, the Line node, represents expressions of the following form:

a +
n∑
i=1

bixi (5)

Where a is a constant, b is a vector of constants of length n, and x is a vector of references to
child nodes of length n.

Line nodes are closed under addition, and under multiplication by a constant, without changing
the size of the graph. Although it is sometimes necessary to extend the size of the vector to
accomodate references to child nodes that have not previously been seen, in most cases there is a
finite upper bound on the number of distinct child nodes, which are always non-linear combinations
and transformations of model parameters.

The second, which Rainier calls the LogLine node, represents expressions of the form:∏
xbii (6)

Similarly, LogLine nodes are closed under multiplication, and under exponentiation by a constant.
In some cases they can also be effectively closed under addition, by using distribution rules on both
sides of the addition to convert them into Line nodes with congruent terms.

The use of this representation has been remarkably effective in practice at achieving significant
partial evaluation of a variety of models.

4 COMPILATION TO JVM BYTECODE
4.1 Target
Rainier compiles computation graphs to a restricted subset of the JVM which consists solely of
static methods with the following properties:

- They never allocate any objects or arrays.
- They never exceed 8000 bytecodes in length.
- They accept exactly two arrays of doubles as parameters. The first one is treated as read-only,
the second as read-write.

- Their return value is always a single double.
- They have no looping or recursion.



148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

4 Avi Bryant

The first two items are important for performance: never allocating means that the garbage
collector should never need to run during sampling; staying under 8000 bytecodes in length avoids a
problem where, with default settings, the JVM’s JIT compiler will avoid compiling methods greater
than that length to machine code, running them in interpreted mode instead.
The remaining items are to provide a simple computational model that is easy to target and to

reason about.

4.2 Compilation
A single compilation unit will consist of one, or usually more than one, computation graphs to be
compiled in sequence. One top-level method will be produced for each of these, whose return value
corresponds to the (necessarily scalar) root node of the graph. For example, it would be common to
compile a graph representing a joint log-density, along with graphs representing each element of
its automatically-derived gradient. (Note that these graphs will all share a considerable amount of
structure.)
Any inputs that might vary between invocations (eg, model parameter values) are provided in

the first, read-only array argument. The second, read-write array argument is used to memoize
intermediate values which are needed by more than one compiled method. For example, if a value is
first computed in the log-density method, but is also needed in one of the gradient methods, it will
be stored in this array at the time it is first computed, and later retrieved as needed. Note that this
means that it is essential to invoke these methods in the same order in which they were compiled:
you cannot, for example, compute just the gradient without first computing the log-density, because
the shared array will not be in the correct state.
To comply with the limitation on the length of individual methods, the compiler may split the

compilation of a single computation graph into a tree of separate methods, with the top-level
method calling one or more second-level methods, which may call one or more third-level methods,
and so on, always passing both array arguments along. The same technique of writing into the
second array is used to share memoized values between them.

4.3 Observations
Note that for small datasets, observations (or partially-evaluated transformations thereof) can
simply be embedded as constants in the compiled method. For larger datasets, it’s possible to treat
the data instead as being similar to parameters, and produce compiled methods that deal with only
a single observation at a time, reading its values from the input array. The higher levels of Rainier’s
API carefully manage the shared state arrays and invocation of the compiled methods in order to
separately (sequentially or in parallel) compute and then sum the contributions to the log-density
and the gradient of each observation.

See Appendix A for a representative sample of the code generated by the compiler.

5 PERFORMANCE
Rainier was benchmarked against Stan on the same hardware (2019 2.3Ghz MacBook Pro 16"), on a
small number of models taken from Stan’s example models repository 1. They were transcribed as
closely as possible to Rainier. Timings for Stan was taken from its self-reported gradient evaluation
times; timings for Rainier were measured using the JMH benchmarking library 2. See Table 1 for
results.

1https://github.com/stan-dev/example-models/
2https://openjdk.java.net/projects/code-tools/jmh/



197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

A Bayesian Computation Graph for High-Performance Gradient Evaluation on the JVM 5

Table 1. Gradient evaluation time (µs)

Model Stan Rainier

eight_schools 24 1
ar_k 97 4

low_dim_gauss_mix 292 650
glmm_poisson 582 235

Table 2. kidiq evaluation time (µs)

N Stan Rainier

100 37 10
200 57 10
400 104 10

For the kidiq_multi_preds linear regression example, both Rainier and Stan were benchmarked
using the first 100, 200, and 400 of the 434 observations in the examples repository. As you can see
in Table 2, Rainier’s partial evaluation was able to make this gradient evaluation asymptotically
faster than the naive approach.

6 ANNOTATED PARAMETERS
6.1 Motivation
Computation graphs like Theano and TensorFlow were designed for constructing deep neural
network models, which do not generally have explicit priors on parameters. A typical model
will transform and combine parameters and input data to produce some output value, and then
compute a single loss function by comparing that output value with a target value. Often, the actual
parameter creation is encapsulated in some kind of function or module that returns an intermediate
computed value and does not provide access to the raw parameters, but this doesn’t pose any
problems because the loss function at the root of the computation graph is the only thing that
matters.

In a Bayesian context, a function or module that creates new parameters must not only return a
computation involving those parameters, but must also in some way provide new terms for the joint
log-density function that represent the priors for those parameters. Because it would be awkward
to thread those terms through as return values, this is typically handled as some kind of side-effect:
for example, by mutating a global log_prob value (as in Stan) or a thread-local model context (as in
PyMC3 [3]). This use of global, mutable state to capture prior probabilities can make it difficult to
reason about your code, most especially in an interactive environment such as a REPL or notebook.

6.2 Approach
Rainier avoids any such global state by allowing each parameter node in the graph to optionally
be annotated with a density sub-graph, which, as a special-case, will cyclically refer back to the
parameter node. A model is primarily defined by one or more log-likelihood computations, similar
to the loss-functions used in a DNN context; however, these are summed with the log-densities that
annotate any parameter in the graph that is reachable from the likelihood node, to assemble the full
joint log-density. This allows fully immutable construction of Bayesian computation graphs (with



246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

6 Avi Bryant

Fig. 1. The computation graph for a LogNormal(0,1) parameter

the use of a special primitive for setting up the cyclical annotation when creating a parameter). See
Figure 1 for a simple example.

7 SUPPORT TRACKING
7.1 Motivation
It is commonplace when constructing a Bayesian model to use some random variable defined earlier
in the model to parameterize a distribution: for example, to use a parameter σ to parameterize
some Normal(µ,σ ). Often, there are restrictions on the support of that random variable (eg in this
case, σ > 0). Errors in specifying the model can lead to violations of those restrictions; the more
clearly and directly those violations can be caught, the more easily the modeler will be able to
discover and fix the error.

7.2 Approach
Rainier tracks the support of every random variable in the model - that is to say, every node
in the computation graph - as a pair of double values representing lower and upper bounds of
that support. As the base case, parameter nodes always have the bounds (-inf,inf), and a node
representing a constant value k will always have the bounds (k,k). From there, nodes representing
mathematical operations will have bounds obtained from straightforward interval arithmetic on
the bounds of their terms. Most importantly, this allows distributions to check the support of
their parameterization at construction time, and raise a warning or error if it is not appropriate.
The availability of these bounds is also valuable for debugging and understanding models, in an
interactive or visualization context.

ACKNOWLEDGMENTS
We would like to thank Stripe for funding and motivating much of this work, and to particularly
acknowledge Roban Kramer, Mio Alter, and Andrew Metcalf for their feedback on Rainier’s API
and implementation.



295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

A Bayesian Computation Graph for High-Performance Gradient Evaluation on the JVM 7

REFERENCES
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy

Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry
Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin
Wicke, Yuan Yu, and Xiaoqiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
http://tensorflow.org/ Software available from tensorflow.org.

[2] Matthew D. Hoffman, Matthew J. Johnson, and Dustin Tran. 2018. Autoconj: Recognizing and Exploiting Conjugacy
Without a Domain-Specific Language. CoRR abs/1811.11926 (2018). arXiv:1811.11926 http://arxiv.org/abs/1811.
11926

[3] John Salvatier, Thomas V. Wiecki, and Christopher Fonnesbeck. 2016. Probabilistic programming in Python using
PyMC3. PeerJ Computer Science 2 (apr 2016), e55. https://doi.org/10.7717/peerj-cs.55

[4] Stan Development Team. 2018. Stan Modeling Language Users Guide and Reference Manual, Version 2.18.0. http:
//mc-stan.org/

[5] Theano Development Team. 2016. Theano: A Python framework for fast computation of mathematical expressions.
arXiv e-prints abs/1605.02688 (May 2016). http://arxiv.org/abs/1605.02688

A COMPILED FUNCTION EXAMPLE
This is a portion of the bytecode generated for a linear regression model, decompiled into its Java
equivalent for readability (Rainier directly generates the JVM bytecode, and does not rely on any
Java compiler.)

public static final double f0(double[] in, double[] g) {
g[8] = in[1] * in[1];
g[2] = in[0] * in[0];
g[9] = (1.0 + g[2]) * 3.141592653589793;
g[6] = in[2] * in[2];
g[10] = in[3] * in[3];
double d = -0.05263157894736842 * in[2];
g[0] = -5.535908297792862E-4 * g[8] / g[2];
g[1] = -5.535908297792862E-4 * in[1] * in[3] / g[2];
g[3] = -5.535908297792862E-4 * in[3] * in[1] / g[2];
g[4] = -5.535908297792862E-4 * g[10] / g[2];
double d2 = -0.04518382122361609 * in[2];
return (-0.0014607260940301225 +
-3.459942686120538E-5 * g[8] +
java.lang.Math.log(g[9]) * -6.919885372241076E-5 +
-3.459942686120538E-5 * g[6] +
-3.459942686120538E-5 * g[10] +
-5.0038457168762935 * g[6] / g[2]
+ d * in[1] / g[2] +
d * in[3] / g[2] +
-0.05263157894736842 * in[1] * in[2] / g[2] +
g[0] + g[1] +
-0.05263157894736842 * in[3] * in[2] / g[2] +
g[3] + g[4] +
in[2] / g[2] +
0.010518225765806436 * in[3] / g[2] +
0.010518225765806436 * in[1] / g[2] +
-3.6878820792274802 * g[6] / g[2] +

http://tensorflow.org/
http://arxiv.org/abs/1811.11926
http://arxiv.org/abs/1811.11926
http://arxiv.org/abs/1811.11926
https://doi.org/10.7717/peerj-cs.55
http://mc-stan.org/
http://mc-stan.org/
http://arxiv.org/abs/1605.02688


344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

8 Avi Bryant

d2 * in[1] / g[2] +
d2 * in[3] / g[2] +
f1(in, g) + g[0]);

}

public static final double f1(double[] in, double[] g) {
return -0.04518382122361609 * in[1] * in[2] / g[2];

}


	1 Introduction
	2 Related Work
	3 Partial Evaluation
	3.1 Motivation
	3.2 Goal
	3.3 Asymptotic Speedup
	3.4 Approach

	4 Compilation to JVM Bytecode
	4.1 Target
	4.2 Compilation
	4.3 Observations

	5 Performance
	6 Annotated Parameters
	6.1 Motivation
	6.2 Approach

	7 Support Tracking
	7.1 Motivation
	7.2 Approach

	Acknowledgments
	References
	A Compiled function example

